Generation and *hetero***-Diels–Alder reactions of an** *o***-quinone methide under mild, anionic conditions: rapid synthesis of** *mono***-benzannelated spiroketals†**

Christopher D. Bray*

Received 21st April 2008, Accepted 23rd April 2008 First published as an Advance Article on the web 28th May 2008 **DOI: 10.1039/b806593d**

Deprotonation of *o*-hydroxybenzyl acetate with *ⁱ* PrMgCl provides a method of generating an *o*-quinone methide under mild, anionic conditions, such that highly sensitive *exo*-enol ethers can be employed as 2p partners in *hetero*-Diels–Alder reactions. This process results in *mono*-benzannelated spiroketals such as those found in the natural products berkelic acid, the chaetoquadrins or cephalostatin 6.

Introduction

Spiroketals are found in a large and diverse range of natural products. The complex structures and often interesting biological activity of such molecules has attracted the interest of many synthetic chemists.**¹** Indeed, there is growing opinion that spiroketals are privileged pharmacophores.**²** By far the most common method of forming a spiroketal is the cyclodehydration of a keto-diol. Often, a large number of steps are required to synthesise these precursors, and in certain instances spiroketalisation does not occur.**³** Overall these factors can detract from the attractiveness of such an approach. An alternative, and often more step efficient strategy for the synthesis of spiroketals comprises the *hetero*-Diels–Alder reaction between an a,bunsaturated carbonyl (4π) component and an *exo*-enol ether as a 2π partner. This method was introduced by Paul and Tchelitcheff in 1954,**⁴** when they showed that acrolein undergoes cycloaddition with 2-methylenetetrahydrofuran to give a [5,6]-spiroketal. Even so, the use of this reaction was almost completely overlooked

School of Biological and Chemical Sciences, The Walter Besant Building, Queen Mary, University of London, Mile End Road, London, E1 4NS, United Kingdom. E-mail: c.bray@qmul.ac.uk; Fax: +44 (0)20 7882 7427; Tel: +44 (0)20 7882 3271

[†] Electronic supplementary information (ESI) available: ¹H and ¹³C NMR spectra for **8a–g**. See DOI: 10.1039/b806593d

until the early 1980's when Ireland and Häbich initially applied this method to the synthesis of insect pheromones.**⁵** Research by Ireland and his group continued to pioneer this reaction throughout the rest of that decade and on into the early 1990's.**⁶** Since then this process has been used in various forms by only a handful of groups,**⁷** and is, in general, underutilised. It was considered whether such an approach could be applied to *mono*-benzannelated spiroketals, since these motifs are found in a range of biologically interesting natural products, for example berkelic acid **1**, **⁸** chaetoquadrin A (**2**) **⁹** and cephalostatin 6 (**3**).**¹⁰**

Within the context of such an approach, the α , β -unsaturated carbonyl (4π) component would be an *o*-quinone methide (Scheme 1).**¹¹** The realisation of this concept is the basis of the current paper.

Scheme 1 Retrosynthesis of a *mono*-benzannelated spiroketal.

Results and discussion

Baldwin and co-workers have examined the generation of an *o*-quinone methide *via* thermolytic extrusion of AcOH from **4** in the presence of 4,5-dihydro-2,4-dimethylfuran (Scheme 2).**¹²** The major product was the expected benzopyran **5**, which was

Scheme 2 Unexpected observation of a *mono*-benzannelated spiroketal.

subsequently saponified to give the racemate of the natural product alboatrin. However, simple *exo*-enol ethers readily equilibrate with their *endo*-isomers under acidic and sometimes also thermal conditions. This may explain why they also observed the *mono*-benzannelated spiroketal **6** (as a mixture of diastereomers) in 25% yield. Presumably this was the result of cycloaddition of the intermediate *o*-quinone methide with 4-methyl-2 methylenetetrahydrofuran.**¹³**

If this is the case, then equilibration needed to be avoided in the present work, since simple *exo*-enol ethers were to be employed as starting materials and are thermodynamically the less stable isomers.**¹⁴** Therefore the primary requirement was a method to generate an *o*-quinone methide under very mild, anionic conditions.**¹⁵** Pettus *et al.* have reported *hetero*-Diels– Alder reactions of b-substituted *o*-quinone methides generated from *O*-BOC-salicylic aldehydes upon addition of organometallic reagents. However, when simple enol ethers were employed as 2π partners, the reactions where almost exclusively carried out using the 2π partner as solvent.¹⁶ In addition, in related work, when a fluoride initiated release of a b-unsubstituted *o*-quinone methide was investigated, the use of >35 equivalents of 2π partner was required for efficient cycloaddition.**¹⁷** Obviously, processes that require such large excesses of 2π partner do not lend themselves to natural product synthesis. Loubinoux *et al.* have reported that treatment of *o*-hydroxybenzyl acetate **7** with *^t* BuOK in the presence of only 2 equiv. of a malonate nucleophile leads to overall nucleophilic substitution of the acetate group, presumably *via* an *o*-quinone methide intermediate.**¹⁸** However, not only are there no reports of this procedure being used in conjunction with a *hetero*-Diels–Alder reaction, but in addition, elevated temperatures were required for efficient reaction (>45 *◦*C). Consequently, although this method was of interest, there was a need to identify an alternative base that would allow for the efficient generation of *o*quinone methides at ambient temperature (or below). A solution of *o*-hydroxybenzyl acetate **7¹⁹** in THF was treated with a range of common bases at 0 *◦*C in the presence of 2,3-dihydrofuran (20 equiv.), as an initial test 2π partner. The reactions were then warmed to 25 $\rm{°C}$ and stirred for 16 h. The use of either K₂CO₃ or Cs_2CO_3 as base did not lead to any reaction, whereas the use of *n*-BuLi led to precipitation of the phenolate anion. In stark contrast, the use of *ⁱ* PrMgCl (1.04 equiv.) led to benzopyran adduct **8a** in 72% yield following column chromatography (Scheme 3).

Scheme 3 Examining the number of equivalents of 2,3-dihydrofuran.

Ultimately, it was found to be most experimentally convenient and higher yielding to deprotonate the phenolic proton of **7** at

Table 1 Examining the scope of 2π partners

Entry	2π partner ^a	Product		Yield ^b
$\,1\,$		À O Å	8a	85%
\overline{c}		뵢 Ă	8 _b	68%
3	EtO	EtO	8c	73%
$\overline{4}$	BuO.	BuO	8d	77%
5	EtS	EtS	8e	59%
6			8f	76%
$\,$ 8 $\,$		∩	8g	59%
9 ^c		ζ ∩	8 _h	$11\%^d$

^a 10 equivalents. *^b* Isolated yield following flash column chromatography. *^c* 1.00 equiv. of *ⁱ* PrMgCl used. *^d* 6 : 1 mixture of **8h** : **8g**.

 -78 °C before addition of the 2π partner, the reaction then being allowed to warm slowly to 25 *◦*C over 16 h. Using otherwise identical conditions, the expected *cis-fused* benzopyran adduct **8a** was obtained in 87% yield. The importance of the number of equivalents of the 2π partner was then investigated: the use of only 10 equivalents of 2,3-dihydrofuran led to only a small drop in the yield of **8a** to 85% (Table 1, entry 1), and on decreasing to only 5 equivalents, the yield of **8a** remained at a respectable 68%. Even when only 2.5 equivalents of the 2π partner were used, the yield was still 45%. The use of a range of other 2π partners was then examined; 3,4-dihydro-2*H*-pyran gave the *cis*-fused benzopyran adduct **8b** in 68% yield (entry 2), whereas the use of ethyl- and *n*-butyl vinyl ether gave **8c** and **8d** in 73% and 77% yields respectively (entries 3 and 4). When ethyl vinyl sulfide was used as the 2π partner, the *hemi*-thioacetal **8e** was obtained in 59% (entry 5). Finally, with a view to establishing methodology that would allow access to the natural products **1–3**, two *exo*-enol ethers were examined as the 2π partners. Gratifyingly, the use of 2-methylenetetrahydrofuran^{5*a*} under the reaction conditions described above, led to the [5,6]-spiroketal **8f** $[\delta_c 106.6 (O_2C)]$ in 76% yield (entry 6), with no sign (as judged by ¹H NMR spectroscopy) of any products due to isomerisation of the 2π partner. Similarly the use of 2-methylenetetrahydropyran^{5*a*} gave 8g $[\delta_c 95.8 \text{ (O}_2\text{C})]$ in 59% yield (entry 8). It is particularly

noteworthy that when only 1.00 equivalent of *ⁱ* PrMgCl was employed in the attempted synthesis of **8g** (entry 9), a 6 : 1 mixture of **8h** : **8g** was obtained. The major product, **8h**, is that derived from cycloaddition of the intermediate *o*-quinone methide with 6-methyl-3,4-dihydro-2*H*-pyran, the *endo*-isomer of 2-methylenetetrahydropyran. This result serves to demonstrate the importance of ensuring that no phenolic protons from **7** are present when the *exo*-enol ether is added, lest isomerisation should occur.

Conclusion

The development of very mild, anionic reaction conditions for the generation of an *o*-quinone methide intermediate has allowed for the use of highly sensitive exo -enol ethers as 2π partners in *hetero*-Diels–Alder reactions. The ease with which the *o*-quinone methide is generated from a readily available precursor using a common base is of note. This rapid, and simple strategy is clearly applicable to the synthesis of a range of natural products including berkelic acid **1**, chaetoquadrin A (**2**) and cephalostatin 6 (**3**).**²⁰**

Experimental

Commercially available reagents were used without further purification except THF which was distilled from Na–benzophenone ketyl. All reactions required anhydrous conditions and were conducted in flame-dried apparatus under an atmosphere of nitrogen. Analytical thin-layer chromatography (TLC) was performed on silica gel plates (0.25 mm) precoated with a fluorescent indicator. Standard flash chromatography procedures were performed using Kieselgel 60 (40–63 μ m). Residual solvent was removed using a static oil pump $(<1$ mbar). Melting points were determined using a Gallenkamp melting point stage and are uncorrected. Infrared spectra were recorded on a Bruker Tensor 27 FTIR machine using a MIRacle ATR accessory. ¹H and ¹³C NMR spectra were recorded in CDCl₃ at 270 and 67.5 MHz respectively on a JeoL EX270. Chemical shifts are reported relative to CHCl₃ [¹H δ 7.27] or CDCl₃ [¹³C δ 77.0]. Mass spectra were obtained by the EPSRC National Mass Spectrometry Service Centre (Swansea) using a high resolution double focussing mass spectrometer (Finnigan MAT 95 XP).

*o***-Hydroxybenzyl acetate¹²***^a* **7**

To a stirred solution of salicyl alcohol (1.00 g, 8.06 mmol) and Ac_2O (0.74 cm³, 7.90 mmol, 0.98 equiv) in anhydrous THF (10 cm^3) at -10 °C was added $BF_3 \cdot OEt_2$ (0.15 cm³, 1.18 mmol, 0.15 equiv) dropwise over 1 min. The reaction was warmed to 4 *◦*C and stirred for a further 16 h. The reaction was quenched at 4 [°]C by the addition of sat. aq. NaHCO₃ (10 cm³). The layers were separated and the aqueous phase was extracted with EtOAc (10 cm^3) . The combined organic phases were washed with water (10 cm³), then dried over $MgSO₄$ and filtered. The solvent was removed *in vacuo* (bath temp. <20 *◦*C) and the residue was purified by flash column chromatography (30% EtOAc in petrol) to give the title compound as a viscous oil, which solidified after approximately 1 week in the freezer leaving a white waxy solid (1.04 g, 80%); mp 35–36 *◦*C (decomp) (lit.,**¹²***^a* oil); all other data as previously reported.

To a solution of *o*-hydroxybenzyl acetate **7** (165 mg, 1 mmol) in THF (0.50 cm3) at −78 *◦*C was added *ⁱ* PrMgCl (2.0 M in THF; 0.52 cm^3 , 1.04 mmol). The solution was stirred for 15 min before the addition of the 2π partner (10 equiv.). The solution was then allowed to warm slowly to 25 *◦*C over 16 h after which time, EtOAc (5 cm^3) was added and the resulting solution was filtered through a short plug of silica (\sim 3cm² × 2 cm) using EtOAc (\sim 20 cm³) as eluent. The filtrate was reduced *in vacuo* and the residue was purified by flash column chromatography $(SiO₂, EtOAc/40–60)$ petrol) to give the following compounds:

2,3,3*a***,9***a***-Tetrahydro-4***H***-1,9-dioxa-cyclopenta[***b***]naphthalene²¹ 8a**

According to the general procedure, *o*-hydroxybenzyl acetate **7** $(167 \text{ mg}, 1.00 \text{ mmol})$ and 2,3-dihydrofuran (0.76 cm^3) gave the title compound **8a** (150 mg, 85%) as white solid; mp 35–36 *◦*C; *R*_f 0.74 (20% EtOAc in petrol); *v*_{max} (film)/cm⁻¹ 2954 w, 1584 m, 1487 m, 1453 m, 1232 m, 1181 m, 1095 s, 1061 s, 1040 s; δ_H (270 MHz; CDCl₃) 7.18–7.04 (2H, m, 2 \times ArCH), 6.94–6.86 $(2H, m, 2 \times ArcH)$, 5.67 (1H, d, J 4.7, O₂CH), 4.07–3.86 (2H, m, OCH₂), 3.08 (1H, dd, *J* 16.4 and 5.5, O₂CHC*H*), 2.81-2.66 (2H, m, ArCH₂), 2.12–1.96 (1H, m, OCH₂CH(H)), 1.77–1.61 (1H, m, OCH₂CH(*H*)); δ_c (67.5 MHz; CDCl₃) 153.5 (ArCO), 129.2 (ArCH), 127.9 (ArCH), 121.6 (ArC), 121.4 (ArCH), 117.1 (ArCH), 101.8 (O₂C), 68.2 (OCH₂), 38.0 (CH), 28.3 (CH₂) and 26.4 (CH₂).

3,4,4*a***,10***a***-Tetrahydro-2***H***,5***H***-pyrano[2,3-***b***]chromene²¹ 8b**

According to the general procedure, *o*-hydroxybenzyl acetate **7** $(166 \text{ mg}, 1.00 \text{ mmol})$ and 3,4-dihydro-2*H*-pyran (0.91 cm^3) gave the title compound **8b** (129 mg, 68%) as white solid; mp 59–60 *◦*C; *R*_f 0.70 (20% EtOAc in petrol); *v*_{max} (film)/cm⁻¹ 2926 m, 1582 w, 1486 m, 1240 m, 1128 m, 1078 s, 1032 m; δ_H (270 MHz; CDCl₃) 7.18–7.02 (2H, m, 2 × ArCH), 6.93–6.83 (2H, m, 2 × ArCH), 5.35 (1H, d, *J* 2.3, O₂CH), 4.09–3.96 (1H, m, OC*H*(H)), 3.79–3.68 (1H, m, OCH(*H*)), 2.95 (1H, dd, *J* 16.6 and 5.9, ArC*H*(H)), 2.68 (1H, dd, *J* 16.6 and 4.8, ArCH(*H*)), 2.26–2.12 (1H, m, OCHC*H*), 1.78–1.59 (4H, m, $2 \times CH_2$); δ_c (67.5 MHz; CDCl₃) 152.8 (ArCO), 129.4 (ArCH), 127.4 (ArCH), 120.8 (ArCH), 119.9 (ArC), 116.4 (ArCH), 96.6 (O₂C), 62.6 (OCH₂), 31.7 (CH), 28.9 (CH₂), 24.1 $(CH₂)$ and 23.5 (CH₂).

2-Ethoxychroman¹⁷ 8c

According to the general procedure, *o*-hydroxybenzyl acetate **7** $(175 \text{ mg}, 1.05 \text{ mmol})$ and ethyl vinyl ether (1.01 cm^3) gave the title compound $\&$ (136 mg, 73%) as colourless oil; R_f 0.40 (10% EtOAc in petrol); *v*_{max} (film)/cm⁻¹ 2932 w, 1583 m, 1488 m, 1456 m, 1373 w, 1351 w, 1328 w, 1301 w, 1274 w, 1223 s, 1178 m, 1118 s, 1102 s, 1057 s; $\delta_{\rm H}$ (270 MHz; CDCl₃) 7.19–7.05 (2H, m, 2 × ArCH), 6.94–6.80 (2H, m, 2 \times ArCH), 5.28 (1H, t, *J* 2.8, O₂CH), 3.92 (1H, dq, *J* 9.6 and 7.1, OC*H*(H)), 3.67 (1H, dq, *J* 9.6 and 7.1, OCH(*H*)), 2.91 (1H, m, ArC*H*(H)), 2.66 (1H, ddd, *J* 5.7, 11.3 and 16.0, ArCH(*H*)), 2.14–1.90 (2H, m, CH₂), 1.22 (3H, t, *J* 7.1, Me); δ_C (67.5 MHz; CDCl₃) 152.3 (ArCO), 129.3 (ArCH), 127.3 (ArCH), 122.7 (ArC), 120.6 (ArCH), 117.0 (ArCH), 97.0 (O₂C), 63.7 (OCH₂), 26.7 (CH₂), 20.6 (CH₂) and 15.2 (Me).

2-Butoxychroman 8d

According to the general procedure, *o*-hydroxybenzyl acetate **7** $(166 \text{ mg}, 1.00 \text{ mmol})$ and butyl vinyl ether (1.29 cm^3) gave the *title compound* 8d (158 mg, 77%) as colourless oil; R_f 0.46 (10% EtOAc in petrol); *v*_{max} (film)/cm⁻¹ 2932 s, 2871 m, 1583 m, 1489 s, 1457 s, 1224 s, 1213 m, 1177 w, 1119 m, 1103 s, 1064 s; $\delta_{\rm H}$ (270 MHz; CDCl₃) 7.18–7.04 (2H, m, 2 \times ArCH), 6.94–6.82 (2H, m, 2 × ArCH), 5.26 (1H, t, *J* 2.9, O₂CH), 3.87 (1H, dt, *J* 9.7 and 6.7, OC*H*(H)), 3.61 (1H, dt, *J* 9.7 and 6.7, OCH(*H*)), 3.09–2.93 (1H, m, ArC*H*(H)), 2.65 (1H, ddd, *J* 3.7, 5.7 and 16.2, ArCH(*H*)), 2.13–1.89 (2H, m, O₂CHC*H*₂), 1.64–1.50 $(2H, m, OCH_2CH_2), 1.42-1.26$ $(2H, m, CH_2Me), 0.90$ $(3H, t, J)$ 7.3, Me); δ_c (67.5 MHz; CDCl₃) 152.2 (ArCO), 129.1 (ArCH), 127.1 (ArCH), 122.5 (ArC), 120.4 (ArCH), 116.8 (ArCH), 96.9 (O_2C) , 67.8 (OCH₂), 31.6 (CH₂), 26.5 (ArCH₂), 20.4 (CH₂), 19.1 (CH₂) and 13.7 (Me). m/z (EI) 206.1303 [M]⁺, C₁₃H₁₈O₂ requires 206.1303.

2-Ethylsulfanylchroman 8e

According to the general procedure, *o*-hydroxybenzyl acetate **7** $(166 \text{ mg}, 1.00 \text{ mmol})$ and ethyl vinyl sulfide (1.01 cm^3) gave the *title compound* **8e** (115 mg, 59%) as light yellow oil; R_f 0.30 (10% EtOAc in petrol); *v*_{max} (film)/cm⁻¹ 2926 s, 1582 s, 1480 s, 1456 s, 1273 s, 1208 s, 1183 s, 1109 s, 1074 s, 1043 s, 1022 s; δ_H (270 MHz; CDCl₃) 7.16–7.03 (2H, m, 2 \times ArCH), 6.94– 6.81 (2H, m, 2 × ArCH), 5.57 (1H, t, *J* 4.1, O(S)CH), 3.06– 2.65 (4H, m, SCH2 and CH2), 2.38–2.24 (1H, m, C*H*(H)), 2.20– 2.08 (1H, m, CH(*H*)), 1.34 (3H, t, *J* 7.4, Me); δ_c (67.5 MHz; CDCl3) 152.5 (ArCO), 129.6 (ArCH), 127.4 (ArCH), 122.0 (ArC), 121.0 (ArCH), 117.5 (ArCH), 80.3 (SCO), 27.4 (CH₂), 24.7 (CH₂), 22.7 (CH₂) and 15.2 (Me); m/z 194.0764 [M]⁺, C₁₁H₁₄OS requires 194.0760.

*mono***-Benzannelated [5,6]-spiroketal 8f**

According to the general procedure, *o*-hydroxybenzyl acetate **7** (190 mg, 1.14 mmol) and 2-methylenetetrahydrofuran**⁵***^a* (1.06 cm3) gave the *title compound* 8f (166 mg, 76%) as colourless oil; R_f 0.23 (5% EtOAc in petrol); *v*_{max} (film)/cm⁻¹ 2938 s, 2887 m, 1582 s, 1490 s, 1457 s, 1356 m, 1302 m, 1235 s, 1216 s, 1184 s, 1136 s, 1116 m, 1084 s, 1022 m; $\delta_{\rm H}$ (270 MHz; CDCl₃) 7.15– 7.04 (2H, m, 2 \times ArCH), 6.90–6.73 (2H, m, 2 \times ArCH), 4.14– 3.93 (2H, m, OCH2), 3.14–2.99 (1H, m, ArC*H*(H)), 2.76 (1H, dt, 4.9 and 16.3, ArCH(*H*)), 2.36–1.82 (6H, m, 3 \times CH₂); δ_c (67.5 MHz; CDCl3) 153.1 (ArCO), 129.2 (ArCH), 127.2 (ArCH), 121.9 (ArC), 120.5 (ArCH), 117.1 (ArCH), 106.7 (O₂C), 68.1 $(OCH₂), 37.0 (O₂ CCH₂), 30.0 (ArCH₂), 24.2 (CH₂) and 22.8$ (CH_2) ; m/z (EI) [M + NH₄]⁺C₁₂H₁₈O₂N requires 208.1332, found 208.1332.

*mono***-Benzannelated [6,6]-spiroketal 8g**

According to the general procedure, *o*-hydroxybenzyl acetate **7** (166 mg, 1.00 mmol) and 2-methylenetetrahydropyran**⁵***^a* (1.08 cm3) gave the *title compound* **8g** (120 mg, 59%) as white solid; mp 53– 54 [°]C; *R*_f 0.26 (5% EtOAc in petrol); *v*_{max} (film)/cm⁻¹ 2937 w, 1581 w, 1486 m, 1454 m, 1231 m, 1215 s, 1156 m, 1142 m, 1101 s, 1076 s, 1044 s, 1034 s; δ_H (270 MHz; CDCl₃) 7.19–7.06 (2H, m, 2 \times ArCH), 6.95–6.87 (2H, m, 2 \times ArCH), 3.86 (1H, dt, *J* 4.1 and 11.2, OC*H*(H)), 3.69–3.59 (1H, m, OCH(*H*)), 3.06 (1H, ddd, *J* 16.3, 13.0 and 6.3, ArC*H*(H)), 2.65 (1H, ddd, *J* 16.3, 6.3 and 2.0, ArCH(*H*)), 2.27–1.54 (8H, m, 4 \times CH₂); δ_c (67.5 MHz; CDCl3) 152.2 (ArCO), 129.1 (ArCH), 127.0 (ArCH), 122.7 (ArC), 120.5 (ArCH), 116.9 (ArCH), 95.8 (O₂C), 61.7 $(OCH₂)$, 34.8 (CH₂), 31.9 (CH₂), 25.2 (CH₂), 21.0 (CH₂) and 18.4 (CH_2) ; m/z (EI) [M + Na]⁺, C₁₃H₁₆O₂Na requires 227.1043, found 227.1040.

Acknowledgements

I wish to thank the EPSRC National Mass Spectrometry Service Centre (Swansea).

References

- 1 (*a*) For reviews, see: V. Vaillancourt, N. E. Pratt, F. Perron and K. F. Albizati, in *Total Synthesis of Natural Products*, ed. J. ApSimon, John Wiley & Sons, New York, 2007, vol. 8, pp. 533–693; (*b*) J. E. Aho, P. M. Pihko and T. K. Rissa, *Chem. Rev.*, 2005, **105**, 4406–4440; (*c*) K. T. Mead and B. N. Brewer, *Curr. Org. Chem.*, 2003, **7**, 227– 256.
- 2 (*a*) L.-G. Milroy, G. Zinzalla, G. Prencipe, P. Michel, S. V. Ley, M. Gunaratnam, M. Beltran and S. Neidle, *Angew. Chem., Int. Ed.*, 2007, **46**, 2493–2496; (*b*) T. Ueno, H. Takahashi, M. Oda, M. Mizunuma, A. Yokoyama, Y. Goto, M. Mizushina, K. Sakaguchi and H. Hayashi, *Biochemistry*, 2000, **39**, 5995–6002.
- 3 S. P. Waters, M. W. Fennie and M. C. Kozlowski, *Org. Lett.*, 2006, **8**, 3243–3246.
- 4 R. Paul and S. Tchelitcheff, *Bull. Soc. Chim. Fr.*, 1954, 672–678.
- 5 (a) R. E. Ireland and D. Häbich, *Chem. Ber.*, 1981, 114, 1418–1427; (*b*) R. E. Ireland and D. Häbich, *Tetrahedron Lett.*, 1980, 21, 1389– 1392.
- 6 R. E. Ireland, J. D. Armstrong, J. Lebreton, R. S. Meissner and M. A. Rizzacasa, *J. Am. Chem. Soc.*, 1993, **115**, 7152–7165.
- 7 For a recent example, see: M. El Sous, D. Ganame, P. A. Tregloan and M. A. Rizzacasa, *Org. Lett.*, 2004, **6**, 3001–3004.
- 8 (*a*) A. A. Stierle, D. B. Stierle and K. Kelly, *J. Org. Chem.*, 2006, **71**, 5357–5360. For recent biomimetic studies towards berkelic acid **1**, see: (*b*) J. Zhou and B. B. Snider, *Org. Lett.*, 2007, **9**, 2071–2074.
- 9 H. Fujimoto, M. Nozawa, E. Okuyama and M. Ishibashi, *Chem. Pharm. Bull.*, 2002, **50**, 330–336.
- 10 G. R. Pettit, Y. Kamano, C. Dufresne, M. Inoue, N. Christie, J. M. Schmidt and D. L. Doubek, *Can. J. Chem.*, 1989, **67**, 1509– 1513.
- 11 For an excellent review of *o*-quinone methides, see: R. W. Van De Water and T. R. R. Pettus, *Tetrahedron*, 2002, **58**, 5367–5405.
- 12 (*a*) R. Rodriguez, J. E. Moses, R. M. Adlington and J. E. Baldwin, *Org. Biomol. Chem.*, 2005, **3**, 3488–3495; (*b*) R. Rodriguez, R. M. Adlington, J. E. Moses, A. Cowley and J. E. Baldwin, *Org. Lett.*, 2004, **6**, 3617– 3619.
- 13 A similar result has also been observed in studies toward the xyloketals, see: J. D. Pettigrew, R. P. Freeman and P. D. Wilson, *Can. J. Chem.*, 2004, **82**, 1640–1648.
- 14 Glassware that has not been washed in base *e.g.* KOH, is sufficient to effect isomerisation of 2-methylenetetrahydropyran to 6-methyl-3,4 dihydro-2*H*-pyran, see ref. 5*a*.
- 15 Xie and Li along with their co-workers have demonstrated routes to *bis*-benzannelated [5,6]- and [6,6]-spiroketals *via* thermolytic extrusion of AcOH from *o*-hydroxybenzyl acetates in the presence of *exo*-enol ethers for which isomerisation is not possible, or does not occur readily under the reaction conditions, see: (*a*) G. Zhou, J. Zhu, Z. Xie and Y. Li, *Org. Lett.*, 2008, **10**, 721–724; (*b*) G. Zhou, D. Zheng, S. Da, Z. Xie and Y. Li, *Tetrahedron Lett.*, 2006, **47**, 3349–3352.
- 16 R. M. Jones, C. Selenski and T. R. R. Pettus, *J. Org. Chem.*, 2002, **67**, 6911–6915. This article also includes one example of base-initiated *o*-quinone methide generation/cycloaddition (50% yield) where the 2π partner (styrene) was employed as solvent.
- 17 A. F. Barrero, J. F. Quílez del Moral, M. Mar Herrador, P. Arteaga, M. Cortés, J. Benites and A. Rosellón, *Tetrahedron*, 2006, **62**, 6012–6017.
- 18 B. Loubinoux, J. Miazimbakana and P. Gerardin, *Tetrahedron Lett.*, 1989, **30**, 1939–1942. 19 Prepared from salicyl alcohol according to: E. E. Weinert, K. N.
- Frankenfield and S. E. Rokita, *Chem. Res. Toxicol.*, 2005, **18**, 1364– 1370.
- 20 Following the original submission of this work, Pettus and his co-workers extended the methodology descibed in ref. 16 to include *exo*-enol ethers, see: M. A. Marsini, Y. Huang, C. C. Lindsey, K.-L. Wu and T. R. R. Pettus, *Org. Lett.*, 2008, **10**, 1477– 1480.
- 21 L. Diao, C. Yang and P. Wan, *J. Am. Chem. Soc.*, 1995, **117**, 5369– 5370.